VUOTO E FORMA

 

 

IL CAMBIAMENTO DELLA FISICA MODERNA

La concezione meccanicistica classica del mondo era basata sull'idea di particelle solide e indistruttibili che si muovono nel vuoto. La fisica moderna ha prodotto un cambiamento radicale di questa immagine, giungendo non solo a una nozione completamente nuova di “particella”, ma trasformando anche profondamente il concetto classico di vuoto. Questa trasformazione, che si realizzò nelle cosiddette teorie dei campi, ebbe inizio con l'idea einsteiniana di associare il campo gravitazionale alla geometria dello spazio, e divenne ancora più profonda quando la teoria dei quanti e la teoria della relatività furono unite per descrivere i campi di forza delle particelle subatomiche. In queste “teorie quantistiche dei campi”, la distinzione tra le particelle e lo spazio che le circonda diviene sempre più sfumata e il vuoto è concepito come una entità dinamica di importanza fondamentale.

 

IL CONCETTO DI CAMPO

Il concetto di campo venne introdotto nel diciannovesimo secolo da Faraday  e da Maxwell nella loro descrizione delle forze tra cariche elettriche e correnti. Un campo elettrico è una condizione, nello spazio attorno a un corpo carico, che può produrre una forza su una qualsiasi altra carica posta in quello spazio. I campi elettrici sono quindi creati da corpi carichi e i loro effetti possono essere risentiti solo da altri corpi carichi. I campi magnetici sono prodotti da cariche in moto, cioè da correnti elettriche, e le forze magnetiche da essi generate possono essere risentite da altre cariche in moto. Nell'elettrodinamica classica, cioè nella teoria costruita da Faraday e da Maxwell, i campi sono entità fisiche primarie che possono essere studiate senza fare alcun riferimento a corpi materiali. I campi elettrici e magnetici variabili possono propagarsi attraverso lo spazio sotto forma di onde radio, di onde luminose, o di altri tipi di radiazione elettromagnetica.

La teoria della relatività ha reso molto più elegante la struttura dell'elettrodinamica unificando i concetti di carica e di corrente da una parte, di campo elettrico e di campo magnetico dall'altra. Dato che ogni moto è relativo, ogni carica può apparire anche come corrente  – in un sistema di riferimento in cui essa si muove rispetto all'osservatore –  e di conseguenza il suo campo elettrico può anche manifestarsi come campo magnetico. Nella formulazione relativistica  della elettrodinamica, i due campi sono così unificati in un unico campo elettromagnetico.

 

LA FORZA DI GRAVITÀ

Il concetto di campo è stato associato non solo alla forza elettromagnetica, ma anche all'altra forza fondamentale presente su larga scala nell'universo, la forza di gravità. I campi gravitazionali sono creati e risentiti da tutte le masse, e le forze che ne derivano sono sempre attrattive, a differenza dei campi elettromagnetici che sono risentiti solo dai corpi carichi e danno luogo a forze sia attrattive che repulsive. La teoria dei campi adatta per il campo gravitazionale è la teoria generale della relatività; in essa l'influenza di una massa sullo spazio circostante ha una portata più vasta di quanto non lo sia la corrispondente influenza di un corpo carico in elettrodinamica. Anche qui lo spazio attorno all'oggetto è “condizionato” in modo tale che un altro oggetto può risentire una forza, ma questa volta il condizionamento modifica la geometria, e quindi la struttura stessa dello spazio.

 

IL PIENO E IL VUOTO

Materia e spazio vuoto – il pieno e il vuoto – furono i due concetti, fondamentalmente distinti, sui quali si basò l'atomismo di Democrito e di Newton. Nella relatività generale, questi due concetti non possono più rimanere separati. Ovunque è presente una massa, sarà presente anche un campo gravitazionale, e questo campo si manifesterà come una curvatura dello spazio che circonda quella massa. Non dobbiamo pensare, tuttavia, che il campo riempia lo spazio e lo “incurvi”. Il campo e lo spazio non possono essere distinti: il campo è lo spazio curvo! Nella relatività generale, il campo gravitazionale e la struttura, o geometria, dello spazio sono identici. Essi sono rappresentati nelle equazioni del campo di Einstein dalla medesima grandezza matematica. Nella teoria di Einstein, quindi, la materia non può essere separata dal suo campo di gravità, e il campo di gravità non può essere separato dallo spazio curvo. Materia e spazio sono pertanto visti come parti inseparabili e interdipendenti di un tutto unico.

 

GLI OGGETTI MATERIALI LEGATI ALL’AMBIENTE

Gli oggetti materiali non solo determinano la struttura dello spazio circostante, ma a loro volta sono influenzati in modo sostanziale dall'ambiente. Secondo il fisico e filosofo Ernst Mach, l'inerzia di un oggetto materiale  – la resistenza che oppone ad essere accelerato –  non è una proprietà intrinseca alla materia, ma una misura della sua interazione con tutto il resto dell'universo. Nella concezione di Mach, la materia possiede inerzia solo perché esiste altra materia nell'universo. Quando un corpo ruota, la sua inerzia produce le forze centrifughe (utilizzate, per esempio, nella fase di centrifugazione di una lavatrice per togliere l'acqua dal bucato bagnato), ma queste forze compaiono solo perché il corpo ruota “rispetto alle stelle fisse”, come ha fatto notare Mach. Se queste stelle fisse dovessero improvvisamente scomparire, l'inerzia e le forze centrifughe del corpo rotante scomparirebbero con esse.

Questa concezione dell'inerzia, nota come principio di Mach, ebbe una profonda influenza su Albert Einstein e costituì la motivazione iniziale che lo stimolò a costruire la teoria generale della relatività. A causa della considerevole complessità matematica della teoria di Einstein, finora i fisici non sono riusciti a stabilire concordemente se essa incorpora realmente il principio di Mach o no. La maggior parte dei fisici ritiene, tuttavia, che questo principio dovrebbe essere incorporato, in qualche modo, in una teoria completa della gravità.

Quindi la fisica moderna ci mostra di nuovo – e questa volta a un livello macroscopico – che gli oggetti materiali non sono entità distinte, ma sono legati in maniera inseparabile al loro ambiente; e che le loro proprietà possono essere comprese solo nei termini della loro interazione con il resto del mondo. Secondo il principio di Mach, questa interazione si estende all'universo in generale, alle stelle e alle galassie lontane. L'unità fondamentale del cosmo si manifesta, perciò, non solo nel mondo dell'infinitamente piccolo ma anche nel mondo dell'infinitamente grande; un fatto che è sempre più accettato nell'astrofisica e nella cosmologia moderne. Per usare le parole dell'astronomo Fred Hoyle,

 

«Gli odierni progressi della cosmologia indicano piuttosto insistentemente che le condizioni della nostra esistenza quotidiana non potrebbero sussistere se non fosse per le parti remote dell'Universo, che tutti i nostri concetti dello spazio e della geometria sarebbero completamente invalidati se le parti remote dell'Universo dovessero scomparire. La nostra esperienza quotidiana, fino ai minimi particolari, sembra essere così strettamente integrata negli aspetti su vasta scala dell'Universo, che è assolutamente impossibile pensare a una separazione delle due cose».

 

IL LIVELLO SUBATOMICO

L'unità e il rapporto reciproco tra un oggetto materiale e il suo ambiente, che è evidente su scala macroscopica nella teoria generale della relatività, appare in una forma ancora più sorprendente a livello subatomico. Qui, le idee della teoria classica del campo si combinano con quelle della meccanica quantistica per descrivere le interazioni tra particelle subatomiche. Una combinazione di questo tipo non è stata finora possibile per l'interazione gravitazionale a causa della complicata forma matematica della teoria della relatività di Einstein; ma l'altra teoria classica del campo, l'elettrodinamica, è stata fusa con la meccanica quantistica in una teoria chiamata «elettrodinamica quantistica» che descrive tutte le interazioni elettromagnetiche tra particelle subatomiche. Questa teoria incorpora sia la teoria quantistica sia quella relativistica. Essa fu il primo modello «quantistico-relativistico» della fisica moderna ed è, a tutt'oggi, quello meglio riuscito.

La caratteristica nuova e sorprendente dell'elettrodinamica quantistica deriva dalla combinazione di due concetti: quello di campo elettromagnetico e quello di fotoni intesi come manifestazione corpuscolare delle onde elettromagnetiche. Poiché i fotoni sono anche onde elettromagnetiche, e poiché queste onde sono campi variabili, i fotoni devono essere manifestazioni dei campi elettromagnetici. Di qui il concetto di «campo quantistico», cioè di un campo che può assumere la forma di quanti, o particelle. Il campo quantistico è un concetto completamente nuovo che è stato esteso ed applicato alla descrizione di tutte le particelle subatomiche e delle loro interazioni, facendo corrispondere a ciascun tipo di particella un diverso tipo di campo. In queste «teorie quantistiche dei campi», il contrasto della teoria classica tra le particelle solide e lo spazio circostante è completamente superato. Il campo quantistico è visto come l'entità fisica fondamentale: un mezzo continuo presente ovunque nello spazio. Le particelle sono soltanto condensazioni locali del campo, concentrazioni di energia che vanno e vengono e di conseguenza perdono il loro carattere individuale e si dissolvono nel campo soggiacente ad esse. Come dice Albert Einstein:

 

“Noi possiamo perciò considerare la materia come costituita dalle regioni dello spazio nelle quali il campo è estremamente intenso... In questo nuovo tipo di fisica non c'è luogo insieme per campo e materia poiché il campo è la sola realtà”.

 

 

LA CONCEZIONE ORIENTALE DEL MONDO

La concezione delle cose e dei fenomeni fisici come manifestazioni effimere di una entità fondamentale soggiacente non è solo un elemento di fondo della teoria dei campi, ma anche un elemento basilare della concezione orientale del mondo. Come Einstein, i mistici orientali considerano questa entità soggiacente come la sola realtà: tutte le sue manifestazioni fenomeniche sono viste come transitorie e illusorie. Questa realtà del mistico orientale non può essere identificata con il campo quantistico dei fisici, poiché essa è vista come l'essenza di tutti i fenomeni di questo mondo e, di conseguenza, è al di là di tutti i concetti E di tutte le idee. Il campo quantistico, viceversa, è un concetto ben definito che spiega solo alcuni dei fenomeni fisici. Ciononostante, l'intuizione che sta dietro l'interpretazione che i fisici danno del mondo subatomico, in termini di campo quantistico, ha una stretta analogia con quella del mistico orientale che interpreta la propria esperienza del mondo sulla base di una realtà ultima fondamentale. Dopo che era stato introdotto il concetto di campo, i fisici hanno tentato di unificare i vari campi in un unico campo fondamentale che dovrebbe incorporare tutti i fenomeni fisici. Einstein, in particolare, dedicò gli ultimi anni della sua vita alla ricerca di questo campo unificato. Il Brahman degli Indù, il Dharrnakāya dei Buddhisti e il Tao dei Taoisti possono essere visti, forse, come il campo unificato fondamentale da cui nascono non solo i fenomeni studiati in fisica, ma anche tutti gli altri fenomeni.

Nella concezione orientale, la realtà soggiacente a tutti i fenomeni trascende tutte le forme e sfugge a tutte le descrizioni e specificazioni. Di essa, perciò, si dice spesso che è senza forme, vacua e vuota. Ma questa vacuità non dev'essere presa per semplice non-essere. Essa è, al contrario, l'essenza di tutte le forme e la sorgente di tutta la vita. Si legge infatti nelle Upanisad:

 

“Il Brahman è il soffio vitale, il Brahman è ka [felicità], il Brahman kha [spazio etereo]... Ciò che è ka è anche kha, ciò che è kha è anche ka”.

 

I Buddhisti esprimono la stessa idea quando essi chiamano la realtà ultima Śūnyata - «vacuità» o «vuoto» - e affermano che è un vuoto vivo che dà origine a tutte le forme del mondo fenomenico. I Taoisti attribuiscono un'analoga creatività, immensa e incessante, al Tao, e anch'essi lo indicano come vuoto. «Il Tao dei cieli è vuoto e senza forme» dice il Kuan-tzu , e Lao-tzu usa diverse metafore per illustrare questa vacuità. Egli spesso paragona il Tao a una valle profonda, oppure a un vaso eternamente vuoto e che quindi ha la possibilità di contenere un'infinità di cose.

Nonostante l'uso di termini come vacuità e vuoto, i saggi orientali fanno capire che essi non intendono la normale vacuità quando parlano del Brahman, del Śūnyata o del Tao, ma, al contrario, intendono un vuoto che ha un potenziale creativo infinito. Dunque, il vuoto dei mistici orientali è certamente paragonabile al campo quantistico della fisica subatomica. Come il campo quantistico, esso genera una infinita varietà di forme che sostiene e, alla fine, riassorbe. Come dicono le Upanisad, 

 

In calma, adori Lui

da cui è venuto

in cui si dissolverà

in cui oggi respira.

 

Le manifestazioni fenomeniche del Vuoto mistico, come le particelle subatomiche, non sono statiche e permanenti, ma dinamiche e transitorie; entrano nell'esistenza e svaniscono in una incessante danza di movimento e di energia. Come il mondo subatomico dei fisici, il mondo fenomenico del mistico orientale è un mondo di samsāra, di continua nascita e morte. Essendo manifestazioni effimere del Vuoto, le cose in questo mondo non hanno alcuna identità fondamentale. Ciò è messo in evidenza soprattutto nella filosofia buddhista, la quale nega l'esistenza di qualsiasi sostanza materiale e sostiene anche che l'idea di un «sé» costante che passa attraverso successive esperienze è un'illusione. I Buddhisti hanno spesso paragonato questa illusione di una sostanza materiale e di un sé individuale al fenomeno di un'onda sull'acqua, nel quale il movimento in su e in giù delle particelle d'acqua ci fa credere che una «parte» di essa si muova sulla superficie. È interessante notare che i fisici hanno usato la stessa analogia nel contesto della teoria dei campi per mettere in evidenza l'illusione creata da una particella in moto dell'esistenza di una sostanza materiale.

Hermann Weyl per esempio scrive:

 

“Secondo questa teoria [la teoria della materia come campo] una particella elementare, per esempio un elettrone, è soltanto una piccola regione del campo elettrico in cui l'intensità assume valori estremamente alti, a indicare che una porzione relativamente enorme dell'energia del campo è concentrata in un piccolissimo spazio. Tale nodo di energia, che non è affatto nettamente distinto dal resto del campo, si propaga attraverso lo spazio vuoto come un'onda sulla superficie di un lago; non vi è nulla che possa considerarsi come un'unica e stessa sostanza di cui l'elettrone consista in ogni istante”.

 

Nella filosofia cinese, l'idea di campo non solo è implicita nella nozione del Tao, vuoto e senza forma e che tuttavia produce tutte le forme, ma è anche espressa esplicitamente nel concetto di ch'i . Questo termine ebbe una funzione importante in quasi tutte le scuole cinesi di filosofia naturale e fu particolarmente importante nel Neoconfucianesimo, la scuola che tentò una sintesi di Confucianesimo, Buddhismo e Taoismo. La parola ch'i letteralmente significa «gas» o «etere», e fu usata nell'antica Cina per indicare il soffio vitale, o energia vitale che anima il cosmo. Nel corpo umano, i «canali del ch'i» sono la base della medicina cinese tradizionale. Lo scopo dell'agopuntura è di stimolare il flusso del ch'i attraverso questi canali. Il flusso del ch'i è anche la base dei movimenti sinuosi del T'ai Chi Ch'uan, la danza taoista del guerriero.

I Neoconfuciani elaborarono un concetto di ch'i che somiglia straordinariamente al concetto di campo quantistico della fisica moderna. Allo stesso modo del campo quantistico, il ch'i è concepito come una forma di materia tenue e non percettibile che è presente in tutto lo spazio e può condensarsi in oggetti materiali solidi.

Dice Chang Tsai:

 

«Quando il ch'i si condensa ci appare come cosa visibile e allora ci sono le forme [delle cose singole]. Quando si rarefà, la sua visibilità si annulla e allora non ci sono forme. Durante la sua condensazione si può non dire che questa è solo temporanea? ma quando si rarefà si può dire affrettatamente che allora non esiste?».

 

Quindi il ch'i si condensa e si rarefà ritmicamente, producendo tutte le forme che alla fine si dissolvono nel Vuoto.

Dice ancora Chang Tsai:

 

«Il Grande Vuoto non può consistere che nel ch'i; questo ch'i non può che condensarsi per dar forma a tutte le cose; queste cose non possono che rarefarsi per dar luogo [ancora una volta] al Grande Vuoto».

 

Come nella teoria dei campi, il campo  - ovvero il ch'i -   non solo è l'essenza soggiacente a tutti gli oggetti materiali, ma trasporta anche le loro interazioni reciproche sotto forma di onde. Dalle descrizioni che seguono, quella di Walter Thirring del concetto di campo nella fisica moderna, e quella di Joseph Needham della concezione cinese del mondo fisico, appare con chiarezza quanto le due idee si somiglino.

 

“La fisica moderna... ha posto il nostro pensiero circa l'essenza della materia in un contesto diverso. Essa ha spostato la nostra attenzione dal visibile, le particelle, all'entità soggiacente ad esse, il campo. La presenza di materia è solo una perturbazione dello stato perfetto del campo in quel punto; si potrebbe quasi dire che è qualcosa di accidentale, soltanto un "difetto". Di conseguenza, non ci sono leggi semplici che descrivono le forze tra le particelle elementari... Ordine e simmetria devono essere cercati nel campo soggiacente ad esse ».

 

«Nell'antichità e nel Medioevo, i Cinesi concepivano l'universo fisico come un tutto perfettamente continuo. Il ch'i condensato in materia palpabile non assumeva, in nessun senso, una struttura corpuscolare, ma i singoli oggetti agivano e reagivano con tutti gli altri oggetti del mondo... con un comportamento di tipo ondulatorio o vibratorio dipendente, in ultima analisi, dal ritmico alternarsi a tutti i livelli delle due forze fondamentali, lo yin e lo yang. I singoli oggetti avevano quindi i loro ritmi intrinseci. E questi erano integrati… nello schema generale dell'armonia del mondo».

 

Col concetto di campo quantistico, la fisica moderna ha trovato una risposta inattesa alla vecchia domanda se la materia è costituita da atomi indivisibili o da un continuum soggiacente ad essa. Il campo è un continuum che è presente dappertutto nello spazio e tuttavia nel suo aspetto corpuscolare ha una struttura discontinua, «granulare». I due concetti apparentemente contraddittori sono quindi unificati e interpretati semplicemente come differenti aspetti della stessa realtà. Come succede sempre in una teoria relativistica, l'unificazione dei due concetti opposti avviene in modo dinamico: i due aspetti della materia si trasformano perennemente l'uno nell'altro. Il misticismo orientale sottolinea un'analoga unità dinamica tra il Vuoto e le forme da esso create. Dice il Lama Govinda:

 

«La relazione tra... forma e vuoto non può essere concepita come uno stato di opposti escludentisi a vicenda, ma soltanto come due aspetti della stessa realtà che coesistono e cooperano incessantemente».

 

La fusione di questi concetti opposti in un tutto unico è stata espressa in un sūtra buddhista con le famose parole:

 

«La forma è vuoto, e il vuoto è in realtà forma. Il vuoto non è diverso dalla forma, la forma non è diversa dal vuoto. Ciò che è forma quello è vuoto, ciò che è vuoto quello è forma».

 

Le teorie dei campi della fisica moderna non solo hanno portato a una nuova concezione delle particelle subatomiche ma hanno anche modificato in maniera radicale la nostra concezione delle forze che agiscono fra queste particelle. In origine, il concetto di campo era legato a quello di forza, e anche nella teoria dei campi esso è ancora associato alle forze tra particelle. Il campo elettromagnetico, per esempio, può manifestarsi come «campo libero» sotto forma di onde/fotoni che si propagano, oppure può avere la funzione di un campo di forze tra particelle cariche. In quest'ultimo caso, la forza si manifesta come scambio di fotoni tra le particelle che interagiscono. La repulsione elettrica tra due elettroni, per esempio, è mediata da questi scambi di fotoni.

 

Questa nuova concezione della forza può sembrare difficile da capire, ma essa diventa molto più chiara quando il processo di scambio di un fotone è rappresentato in un diagramma spazio- tempo. Nel diagramma sono rappresentati due elettroni che si avvicinano tra loro; uno di essi emette il fotone (indicato con y) nel punto A, l'altro lo assorbe nel punto B.

 

 

 

Repulsione reciproca tra due elettroni mediante lo scambio di un f otone

 

Dopo avere emesso il fotone, il primo elettrone inverte la sua direzione e modifica la velocità (come si può vedere dal cambiamento di direzione e d'inclinazione della sua linea di universo), e così pure fa il secondo elettrone quando assorbe il fotone. Infine, i due elettroni si allontanano rapidamente, essendosi respinti l'un l'altro attraverso lo scambio del fotone. L'interazione completa tra gli elettroni comporterà una serie di scambi di fotoni, e come effetto finale gli elettroni sembreranno deviarsi l'un l'altro lungo curve continue.

In termini di fisica classica, si potrebbe dire che gli elettroni esercitano l'uno sull'altro una forza repulsiva. Questo, tuttavia, è considerato oggi un modo molto impreciso di descrivere la situazione. Nessuno dei due elettroni «sente» una forza quando si avvicina all'altro: essi semplicemente interagiscono mediante lo scambio di fotoni, e la forza non è altro che l'effetto macroscopico collettivo di questi ripetuti scambi di fotoni. Il concetto di forza perciò non ha più alcuna utilità nella fisica subatomica: è un concetto classico che noi associamo (anche se solo in maniera subconscia) all'idea newtoniana di forza che agisce a distanza. Nel mondo subatomico non ci sono forze di questo tipo, ma solo interazioni tra particelle, mediate attraverso campi, cioè, attraverso altre particelle. Perciò, i fisici preferiscono parlare di interazioni piuttosto che di forze.

Secondo la teoria dei campi, tutte le interazioni avvengono attraverso lo scambio di particelle. Nel caso delle interazioni elettromagnetiche, le particelle scambiate sono fotoni; i nucleoni, d'altro canto, interagiscono attraverso una forza molto più intensa, quella nucleare, o «interazione forte», che si manifesta come scambio di un nuovo tipo di particelle chiamate “mesoni”. Esistono molti tipi diversi di mesoni che possono essere scambiati tra protoni e neutroni. Più i nucleoni sono vicini tra loro, più sono numerosi e pesanti i mesoni che essi scambiano. Le interazioni tra nucleoni sono quindi connesse alle proprietà dei mesoni scambiati e questi, a loro volta, interagiscono fra loro attraverso lo scambio di altre particelle. Per questa ragione non saremo in grado di capire la forza nucleare a un livello fondamentale prima di capire l'intero spettro delle particelle subatomiche.

Nella teoria dei campi, tutte le interazioni tra particelle possono essere rappresentate con diagrammi spazio-tempo, e ciascun diagramma è associato a una espressione matematica che permette di calcolare la probabilità che si verifichi il corrispondente processo. L'esatta corrispondenza tra i diagrammi e le espressioni matematiche fu stabilita nel 1949 da Richard Feynman, e perciò da allora i diagrammi sono noti come diagrammi di Feynman. Un punto cruciale della teoria è la creazione e la distruzione di particelle. Per esempio, nel diagramma precedente il fotone è creato nel processo di emissione nel punto A, ed è distrutto quando viene assorbito nel punto B. Un processo simile può essere concepito solo in una teoria relativistica nella quale le particelle non sono viste come oggetti indistruttibili, ma piuttosto come figure dinamiche che coinvolgono una certa quantità di energia, che può essere ridistribuita quando si formano nuove figure.

La creazione di una particella dotata di massa è possibile solo quando viene fornita l'energia corrispondente alla sua massa, per esempio in un processo d'urto. Nel caso delle interazioni forti, questa energia non è sempre disponibile, come succede quando due nucleoni interagiscono tra loro in un nucleo atomico. In tali casi, quindi, non dovrebbero essere possibili scambi di mesoni dotati di massa; tuttavia essi si verificano ugualmente. Per esempio, due protoni possono scambiare un «mesone π», o «pione», la cui massa è circa un settimo di quella del protone.

 

 

 

Scambio di un pione (π) tra due protoni (p)

 

Le ragioni per le quali possono avvenire processi di scambio di questo tipo, nonostante l'apparente mancanza di energia per la creazione del mesone, devono essere cercate in un «effetto quantistico» connesso con il principio di indeterminazione. Come si è visto precedentemente, gli eventi subatomici che si verificano entro un intervallo di tempo breve comportano un'incertezza nell'energia proporzionalmente grande. Gli scambi di mesoni, cioè la loro creazione e la successiva distruzione, sono eventi di questo tipo. Essi avvengono in un intervallo di tempo così breve che l'incertezza nell'energia è sufficiente a permettere la creazione dei mesoni stessi. Mesoni di questo tipo sono chiamati particelle «virtuali» e sono diversi dai mesoni «reali» creati nei processi d'urto, perché possono esistere solo per l'intervallo di tempo permesso dal principio di indeterminazione. Più sono pesanti, cioè maggiore è l'energia richiesta per crearli, più è piccolo l'intervallo di tempo permesso per il processo di scambio. Questa è la ragione per la quale lo scambio di mesoni pesanti tra nucleoni può avvenire solo quando questi sono molto vicini tra loro. Lo scambio di fotoni virtuali, viceversa, può avvenire su distanze illimitate perché i fotoni, essendo privi di massa, possono essere creati con una quantità di energia indefinitamente piccola. Questa  analisi delle forze elettromagnetiche e nucleari consentì a Hideki Yukawa, nel 1935, non solo di prevedere l'esistenza del pione, dodici anni prima che fosse osservato, ma anche di stimarne approssimativamente la massa in base al raggio d'azione della forza nucleare.

Nella teoria dei campi, quindi, tutte le interazioni sono rappresentate come scambio di particelle virtuali. Più forte è l'interazione, cioè più è intensa la «forza» risultante tra le particelle, maggiore è la probabilità di questo processo di scambio, e più frequentemente verranno scambiate particelle virtuali. Il ruolo delle particelle virtuali, tuttavia, non è limitato a queste interazioni. Un solo nucleone, per esempio, può benissimo emettere una particella virtuale e riassorbirla poco dopo. Purché il mesone creato scompaia entro il tempo permesso dal principio di indeterminazione, non c'è nulla che proibisca tale processo. Il corrispondente diagramma di Feynman per un neutrone che emette e riassorbe un pione è riprodotto nella figura a p. 255.

 

 

 

Un neutrone (n) emette e riassorbe un pione

 

 

La probabilità di siffatti processi di «autointerazione» è molto alta per i nucleoni a causa della loro forte interazione. Ciò significa che in realtà i nucleoni emettono e assorbono di continuo particelle virtuali. Secondo la teoria dei campi, essi devono essere considerati centri di attività continua e avvolti da nubi di particelle virtuali. I mesoni virtuali devono scomparire in un tempo brevissimo dopo la loro creazione, il che significa che essi non possono allontanarsi molto dal nucleone; di conseguenza, la nuvola di mesoni è molto piccola. Le sue regioni più esterne sono popolate da mesoni leggeri (soprattutto pioni), poiché i mesoni pesanti, dovendo essere assorbiti dopo un tempo molto più breve, rimangono confinati nella parte interna della nube.

Ogni nucleone è circondato da questa nube di mesoni virtuali i quali vivono solo per un periodo di tempo estremamente breve. Tuttavia, i mesoni virtuali possono diventare mesoni reali in particolari circostanze. Quando un nucleone è colpito da un'altra particella che si muove ad alta velocità, una parte dell'energia di moto di questa particella può essere trasferita a un mesone virtuale per liberarlo dalla nube. Questo è il modo in cui i mesoni reali sono creati negli urti ad alta energia. D'altra parte, quando due nucleoni si avvicinano talmente l'uno all'altro che le loro nubi di mesoni si sovrappongono, può accadere che alcune delle particelle virtuali non tornino indietro per essere riassorbite dal nucleone che le ha create inizialmente, ma «saltino dall'altra parte» e siano assorbite dall'altro nucleone. Così si realizzano i processi di scambio che costituiscono le interazioni forti.

Questa rappresentazione mostra chiaramente che le interazioni tra particelle, e quindi le «forze» tra di esse, sono determinate dalla composizione delle loro nubi virtuali. Il raggio d'azione di una interazione, cioè la distanza tra le particelle alla quale avrà inizio l'interazione, dipende dall'estensione delle nubi virtuali, e la forma particolare dell'interazione dipenderà dalle proprietà delle particelle presenti nella nube. Quindi le forze elettromagnetiche sono dovute alla presenza di fotoni virtuali «entro» le particelle cariche, mentre le interazioni forti tra nucleoni hanno origine dalla presenza di pioni virtuali e di altri mesoni «entro» i nucleoni. Nella teoria dei campi, le forze tra particelle appaiono come proprietà intrinseche a queste ultime. Oggi dunque si vede che forza e materia, i due concetti che erano così nettamente separati nell'atomismo greco e newtoniano, hanno la loro origine comune nelle figure dinamiche che chiamiamo particelle.

Questa concezione delle forze è anche caratteristica del misticismo orientale che considera movimento e mutamento come proprietà essenziali di tutte le cose e intrinseche ad esse. «Tutte le cose che ruotano» dice Chang Tsai riferendosi ai cieli «hanno una forza spontanea e quindi il loro moto non è imposto ad esse dall'esterno»; e nell'I King leggiamo:

 

«Esse [le leggi di natura] non sono circostanze estrinseche alle cose, sono anzi l'armonia del moto, immanente ad esse ».

 

Questa antica descrizione cinese delle forze come simbolo dell'armonia del movimento entro le cose sembra particolarmente appropriata alla luce della teoria dei campi, nella quale le forze tra particelle sono viste come riflesso delle forme dinamiche (le nubi virtuali) inerenti alle particelle stesse.

 

 

La teoria dei campi della fisica moderna ci costringe ad abbandonare la classica distinzione tra particelle materiali e vuoto. La teoria del campo gravitazionale di Einstein e la teoria dei campi mostrano entrambe che le particelle non possono essere separate dallo spazio che le circonda. Da una parte, esse determinano la struttura di questo spazio, mentre dall'altra non possono venire considerate come entità isolate, ma devono essere viste come condensazioni di un campo continuo che è presente in tutto lo spazio. Nella teoria dei campi, il campo è visto come la base di tutte le particelle e delle loro interazioni reciproche.

 

“Il campo esiste sempre e dappertutto, non può mai essere eliminato. Esso è il veicolo di tutti i fenomeni materiali. E il "vuoto" dal quale il protone crea i mesoni π. L'esistere e il dissolversi delle particelle sono semplicemente forme di moto del campo”.

 

Infine, la distinzione tra materia e spazio vuoto dovette essere abbandonata quando divenne evidente che le particelle virtuali possono generarsi spontaneamente dal vuoto, e svanire nuovamente in esso, senza che sia presente alcun nucleone o altra particella a interazione forte. Riportiamo qui un «diagramma vuoto-vuoto» per un processo di questo tipo: tre particelle  - un protone (P), un antiprotone (p), e un pione (π) -  emergono dal nulla e scompaiono nuovamente nel vuoto. Secondo la teoria dei campi, eventi di questo tipo avvengono di continuo. Il vuoto è ben lungi dall'essere vuoto. Al contrario, esso contiene un numero illimitato di particelle che vengono generate e scompaiono in un processo senza fine.

 

 

 

 

 

In questo aspetto della fisica moderna c'è dunque la più stretta corrispondenza con il Vuoto del misticismo orientale. Analogamente al Vuoto dei mistici orientali, il «vuoto fisico»  - come è chiamato nella teoria dei campi -  non è uno stato di semplice non-essere, ma contiene la potenzialità di tutte le forme del mondo delle particelle. Queste forme, a loro volta, non sono entità fisiche indipendenti, ma soltanto manifestazioni transitorie del Vuoto soggiacente ad esse. Come dice il sutra, «la forma è vuoto, e il vuoto in realtà è forma».

La relazione tra le particelle virtuali e il vuoto è una relazione essenzialmente dinamica; il vuoto è certamente un «Vuoto vivente», pulsante in ritmi senza fine di creazione e distruzione. La scoperta della qualità dinamica del vuoto è considerata da molti fisici uno dei risultati più importanti della fisica moderna. Dall'avere una funzione di vuoto contenitore dei fenomeni fisici, il vuoto è passato ad essere una quantità dinamica della massima importanza. I risultati della fisica moderna sembrano quindi confermare le parole del saggio cinese Chang Tsai:

 

“Quando si conosce che il Grande Vuoto è pieno di ch'i, si comprende che non esistono cose quali il non-essere”.

 

 

(da F. Capra, Il Tao della fisica)

 

 

 

 

 

 

 

 

Filosofia

 

Altri argomenti del Tao

 

Scrivi

 

© www.mimmademaio.com - 2012